iPad Pilot

Monday 1/30 to Friday 3/10

Takeaways

- (1) Helped raise the bar of average work
- (2) Positive impact on experiments and lab reports
- (3) Effective use of feedback
- (4) Increased ability of students to see iterations of their own work getting better and more accurate

Helped raise the bar of average work

Example 1

Step 1: Use the pattern to determine the type of reaction.

Step 2: Write the symbols for each substance. (TIP: Subscripts are only present when an atom is diatomic, a polyatomic ion, or crisscrossed charges in a compound.)

Step 3: Determine if the reaction is balanced by counting the total number of atoms on both sides of the equation. (TIP: Make a table if necessary to help visualize the number of atoms, like the simulation.)

Step 4: If the equation is unbalanced work out how many more atoms are needed. (TIP: Never balance by adding subscripts, balance by adding coefficients. Remember multiply coefficients by subscripts to determine the total number of atoms.)

\[
\lambda_{cb}, \left(\cdot \text{Capital/lowrose}. \right) \]

· no charge

· Subscipes are write corectly

Cris Cross

Step 5: Write the balanced chemical equation.

Type Synthesis Reaction

A + B -> AB

Hydrogen + chlorine -> hydrogen chloride

2H 2CI \$ 1H 1 CI

Final Hz+ Clz > ZHCI

Example 1

Step 1: Use the pattern to determine the type of reaction.

Step 2: Write the symbols for each substance. (TIP: Subscripts are only present when an atom is diatomic, a polyatomic ion, or crisscrossed charges in a compound.)

Step 3: Determine if the reaction is balanced by counting the total number of atoms on both sides of the equation. (TIP: Make a table if necessary to help visualize the number of atoms, like the simulation.)

Step 4. If the equation is unbalanced work out how many more atoms are needed. (TIP: Never balance by adding subscripts, balance by adding coefficients. Remember multiply coefficients by subscripts to determine the total number of atoms.)

Step 5: Write the balanced chemical equation.

Hydrogen + chlorine - hydrogen (hloride

Hydrogen + chlorine - hydrogen (hloride

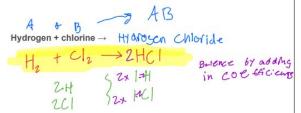
Hzt (| >> 2H (1 | ft) (1)

ZH Z () | t Ht (1)

ZX (=> 2 X (=

amous not = SISUS

Example 1

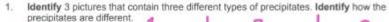

Step 1: Use the pattern to determine the type of reaction.

Step 2: Write the symbols for each substance. (TIP: Subscripts are only present when an atom is diatomic, a polyatomic ion, or crisscrossed charges in a compound.)

Step 3: Determine if the reaction is balanced by counting the total number of atoms on both sides of the equation. (TIP: Make a table if necessary to help visualize the number of atoms, like the simulation.)

Step 4: If the equation is unbalanced work out how many more atoms are needed. (TIP: Never balance by adding subscripts, balance by adding coefficients. Remember multiply coefficients by subscripts to determine the total number of atoms.)

Step 5: Write the balanced chemical equation. -> W Charges



Positive impact on experiments and lab reports

Solution	NaCl	K ₂ (HPO ₄)	KI	NaOH	CoCl ₂	AgNO ₃	NiCl ₂	CuSO ₄
NaCl			OC	O'			0	0
K ₂ (HPO ₄)								0
кі				6			\bigcirc	
NaOH					0			
CoCl ₂								
AgNO ₃								
NiCl ₂								
CuSO ₄								

Lesson 5 - Double Replacement Reaction Lab (2)

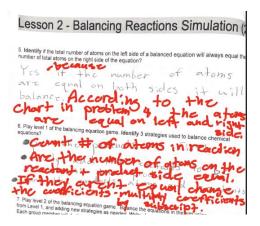
Directions: Answer the following questions using the appropriate task verbs.

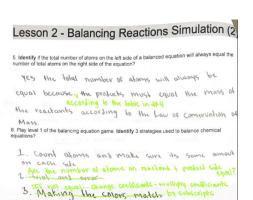
- 1.) AgNO3 + NaOH
- 2.) NiCla + AgNOs
- 3. AgNO + Coci.

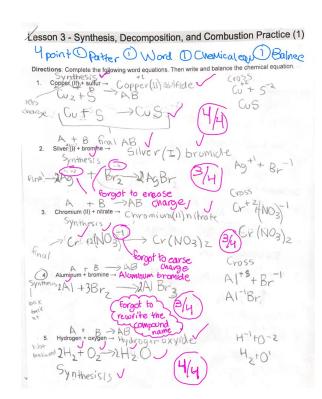
the bold part of the the solid part of Product had small Flores Pleating on top. Bort of a Swall to the loot to w film an ourfact

the solid part of the Product outs had flakes flooding on the surface clumptry together

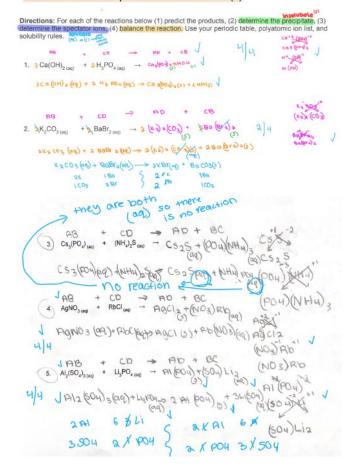
Lesson 5 - Double Replacement Reaction Lab (2)

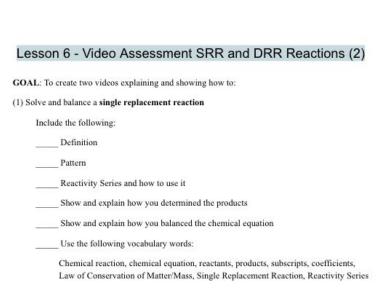

the product was

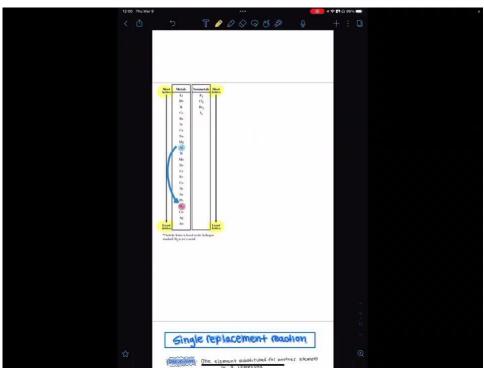

Kind of Clumpy and

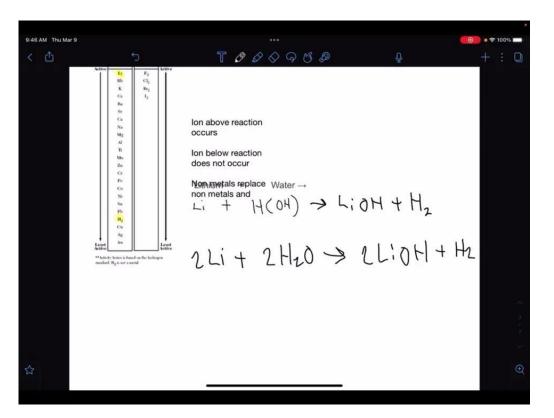

Directions: Answer the following questions using the appropriate task verbs.

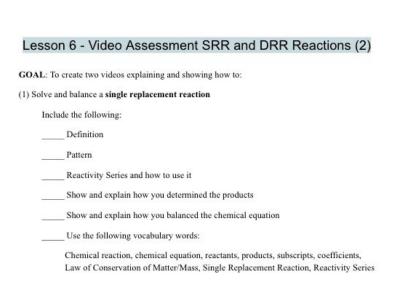
Identify 3 pictures that contain three different types of precipitates. Identify how the precipitates arm

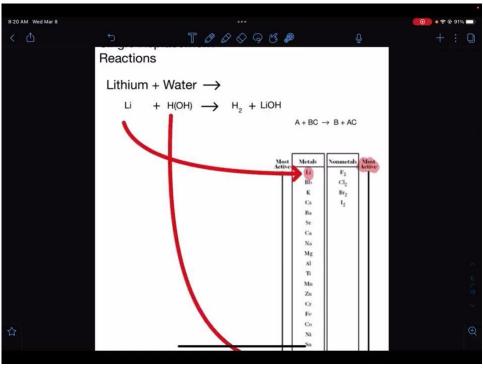

Effective use of feedback

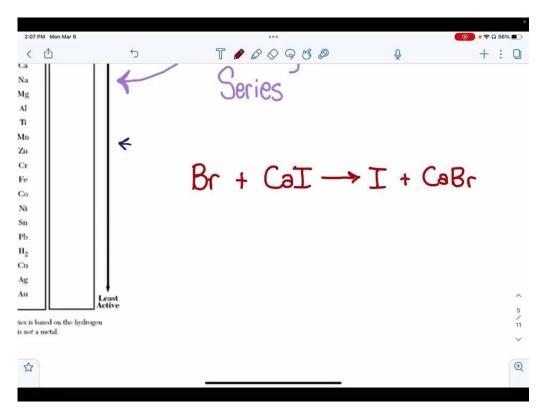





Lesson 5 - Double Replacement Reaction Lab (4)






Lesson	6 - Video Assessment SRR and DRR Reactions (2)
GOAL: To c	reate two videos explaining and showing how to:
(1) Solve and	balance a single replacement reaction
Include	e the following:
	Definition
	Pattern
	Reactivity Series and how to use it
	Show and explain how you determined the products
	Show and explain how you balanced the chemical equation
	Use the following vocabulary words:
	Chemical reaction, chemical equation, reactants, products, subscripts, coefficients, Law of Conservation of Matter/Mass, Single Replacement Reaction, Reactivity Series

Lesson 6 - Video Assessment SRR and DRR Reactions (2) GOAL: To create two videos explaining and showing how to: (1) Solve and balance a single replacement reaction Include the following: _____ Definition ____ Pattern ____ Reactivity Series and how to use it ____ Show and explain how you determined the products ____ Show and explain how you balanced the chemical equation ____ Use the following vocabulary words: Chemical reaction, chemical equation, reactants, products, subscripts, coefficients, Law of Conservation of Matter/Mass, Single Replacement Reaction, Reactivity Series

